4 years ago

High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices

High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices
R. Malureanu, A. V. Lavrinenko, O. Takayama, J. Sukham
A low-absorption adhesion layer plays a crucial role for both localized and propagating surface plasmons when ultrathin gold is used. To date, the most popular adhesion layers are metallic, namely, Cr and Ti. However, to the best of our knowledge, the influence of these adhesion layers on the behavior of propagating plasmon modes has not been thoroughly investigated nor reported in the literature. It is therefore important to study the effect of these few- to several-nanometers-thick adhesion layers on the propagating plasmons because it may affect the performance of plasmonic devices, in particular, when the Au layer is not much thicker than the adhesion layers. We experimentally compared the performances of the ultrathin gold films to show the pivotal influence of adhesion layers on highly confined propagating plasmonic modes, using Cr and 3-aminopropyl trimethoxysilane (APTMS) adhesion layers and without any adhesion layer. We show that the gold films with the APTMS adhesion layer have the lowest surface roughness and the short-range surface plasmon polaritons supported on the Au surface exhibit properties close to the theoretical calculations, considering an ideal gold film.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07181

DOI: 10.1021/acsami.7b07181

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.