3 years ago

Probing the Morphology and Evolving Dynamics of 3D Printed Nanostructures Using High-Speed Atomic Force Microscopy

Probing the Morphology and Evolving Dynamics of 3D Printed Nanostructures Using High-Speed Atomic Force Microscopy
Maja Dukic, Chen Yang, Harald Plank, Georg. E. Fantner, Robert Winkler, Jie Zhao
Focused electron beam induced deposition (FEBID) has been demonstrated as a promising solution for synthesizing truly three-dimensional (3D) nanostructures. However, the lack of morphological feedback during growth complicates further development toward higher spatial fabrication precision. Here, we show that by combining in situ high speed atomic force microscopy (HS-AFM) with FEBID, morphologies in multistep fabrication process can be accessed. More importantly, the proposed method enables simultaneous imaging and fabrication operation, which opens new possibilities to investigate evolving mechanical properties of the deposit. The experiments indicate an exponential increase law of the mechanical resistance, meaning that a mechanically stable state establishes around 4 min after deposition.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07762

DOI: 10.1021/acsami.7b07762

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.