3 years ago

Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/α-Fe2O3 and the Significance of Interface Morphology Control

Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/α-Fe2O3 and the Significance of Interface Morphology Control
Yaqiong Wang, Joe Briscoe, Steve Dunn, Yongfei Cui, Nadezda V. Tarakina
We have used a ferroelectric BaTiO3 substrate with a hematite (α-Fe2O3) nanostructured surface to form a heterogeneous BaTiO3/α-Fe2O3 photocatalyst. In this study we show that varying the mass ratio of α-Fe2O3 on BaTiO3 has a significant influence on photoinduced decolorization of rhodamine B under simulated sunlight. The highest photocatalytic activity was obtained for BaTiO3–Fe2O3-0.001M, with the lowest mass ratio of α-Fe2O3 in our study. This catalyst exhibited a 2-fold increase in performance compared to pure BaTiO3 and a 5-fold increase when compared to the higher-surface-area pure α-Fe2O3. The increases in performance become more marked upon scaling for the lower surface area of the heterostructured catalyst. Performance enhancement is associated with improved charge-carrier separation at the interface between the ferroelectric surface, which exhibits ferroelectric polarization, and the hematite. Increasing the mass ratio of hematite increases the thickness of this layer, lowers the number of triple-point locations, and results in reduced performance enhancement. We show that the reduced performance is due to a lack of light penetrating into BaTiO3 and to relationships between the depolarization field from the ferroelectric and carriers in the hematite. Our findings demonstrate that it is possible to use the built-in electric field of a ferroelectric material to promote charge-carrier separation and boost photocatalytic efficiency.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03523

DOI: 10.1021/acsami.7b03523

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.