3 years ago

Growth and Characterization of Metastable Hexagonal Nickel Thin Films via Plasma-Enhanced Atomic Layer Deposition

Growth and Characterization of Metastable Hexagonal Nickel Thin Films via Plasma-Enhanced Atomic Layer Deposition
Ken Cadien, Pouyan Motamedi, James David Hogan, Kai Cui, Ken Bosnick
There is a great interest in various branches of the advanced materials industry for the development of novel methods (and improvements to existing ones) for the deposition of conformal ultrathin metallic films. In most of these applications, like enhanced solar absorbers and microelectronics, achieving the capacity to deposit a conformal thin film on a three-dimensional structure is an important condition. Plasma-enhanced atomic layer deposition (ALD) is known for its potential for growth of conformal thin films with a precise control over the thickness and its capability for deposition at relatively low temperatures (below 500 °C). This study evaluates the potential of plasma-enhanced ALD for growth of conformal nickel thin films, using bis(ethylcyclopentadienyl)nickel and nitrogen/hydrogen plasma as precursors. A comprehensive analysis of the structure, composition, and physical properties of the films was performed. The results indicate that conformal nickel films with low levels of impurity were successfully deposited on sapphire. The films had a roughness of Ra = 1.5 nm and were seen to be under strain. The deposited nickel had a hexagonal crystal structure, with a random in-plane orientation of the grains, while the grains had their c-axes oriented along the normal to the interface. These results pave the way for conformal low-temperature deposition of high-quality nickel thin films on three-dimensional structures.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05571

DOI: 10.1021/acsami.7b05571

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.