3 years ago

Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid–Formate Solution

Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid–Formate Solution
Bei Jiang, Wen-Bin Cai, Kun Jiang, Shuo Zhang
Steerable hydrogen generation from the hydrogen storage chemical formic acid via heterogeneous catalysis has attracted considerable interest given the safety and efficiency concerns in handling H2. Herein, a series of carbon-supported capping-agent-free Pd nanoparticles (NPs) with mean sizes tunable from 2.0 to 5.2 nm are developed due to the demand for more efficient dehydrogenation from a formic acid–formate solution of pH 3.5 at room temperature. The trick for the facile size-controlled synthesis of Pd/C catalysts is the selective addition of Na2CO3, NH3·H2O, or NaOH to a Pd(II) solution to attain initial pH values of 7–9.5. For comparison, cuboctahedron modeling and electrochemical COads stripping methods are applied to evaluate active surface Pd sites for turnover frequency (TOF) calculation. Both mass activity and specific activity (TOF) of hydrogen production are not only time-dependent but also Pd-size-dependent. An initial H2 production rate of 246 L·h–1·gPd–1 is achieved on 2.0 nm Pd/C at 303 K, together with a TOF of 1815 h–1 on the basis of cuboctahedron modeling of surface-active Pd sites. The initial TOF exhibits a significant rise from 3.5 down to 2.8 nm and then levels off below 2.8 nm and even shows a maxima at ca. 2.2 nm using the electrochemical surface area for calculation. The volcano-shaped dependence of TOF on Pd NP size may be better attributed to the changing ratios of terrace sites to defect sites on Pd NPs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08441

DOI: 10.1021/acsami.7b08441

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.