5 years ago

Manganese Oxide Nanoparticle as a New p-Type Dopant for High-Performance Polymer Field-Effect Transistors

Manganese Oxide Nanoparticle as a New p-Type Dopant for High-Performance Polymer Field-Effect Transistors
Yong-Young Noh, Dang Xuan Long, Eun-Young Choi
We report a new p-type dopant, manganese oxide (Mn3O4) nanoparticle, to enhance the performance of organic field-effect transistors (OFETs) with conjugated polymers, including poly(3-hexylthiophene-2,5-diyl), poly[[N,N 9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)], and poly[[2,5-bis(2-octyldodecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,2′-(2,5-thiophene)bis-thieno(3,2b) thiophene]-5,5′-diyl]] (DPPT-TT). Incorporating a small amount of Mn3O4 nanoparticles in the semiconductor film significantly improved the hole mobility and decreased the threshold voltage for all OFETs, indicating efficient Mn3O4 nanoparticle p-type doping. The Mn3O4 nanoparticle showed a better doping efficiency than the widely used FeCl3 dopant due to better mixability with the host conjugated polymers. In particular, doped DPPT-TT OFETs showed significantly improved mobility up to 2.35 (±0.4) cm2/(V·s) with enhanced air and operational stability at 0.1 wt % doping concentration from 1.2 cm2/(V·s) for pristine devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04729

DOI: 10.1021/acsami.7b04729

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.