3 years ago

Sonochemical synthesis of polyoxometalate based of ionic crystal nanostructure: A photocatalyst for degradation of 2,4-dichlorophenol

Sonochemical synthesis of polyoxometalate based of ionic crystal nanostructure: A photocatalyst for degradation of 2,4-dichlorophenol
Single crystals of new polyoxometalate based ionic crystal [Fe(phen)3]2[SiW12O40]·3DMF (IC-Fe), (phen=1,10-phenanthroline, DMF= N,N-dimethylformamide) and their nanoparticles (IC-Fe-NPs) have been synthesized via self-assembly of constituent ions and sonochemical reaction, respectively. All materials have been characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravimetric (TG), powder X-ray diffraction (PXRD), FT-IR spectroscopy and elemental analyses. Effect of sonication conditions on size and morphology of IC-Fe was investigated including time, concentrations of initial reagents and power of irradiation. Further studies have shown that IC-Fe is not only active in photocatalytic degradation of 2,4-dichlorophenol under visible light irradiation, but also is very stable in the various solvents and it can be easily separated and reused for cycles of reaction.

Publisher URL: www.sciencedirect.com/science

DOI: S1350417717303140

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.