3 years ago

A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary

A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary
Spatiotemporal variations in East Asian Monsoon (EAM) precipitation during the Quaternary have been intensively studied. However, spatial variations in pre-Quaternary EAM precipitation remain largely uninvestigated, preventing a clear understanding of monsoon dynamics during a warmer climatic period. Here we compare the spatial differences in heavy mineral assemblages between Quaternary loess and pre-Quaternary Red Clay on the Chinese Loess Plateau (CLP) to analyze spatial patterns in weathering. Prior studies have revealed that unstable hornblende is the dominant (∼50%) heavy mineral in Chinese loess deposited over the past 500 ka, whereas hornblende content decreases to <10% in strata older than ∼1 Main the central CLP because of diagenesis. In the present study we found that hornblende is the dominant heavy mineral in 2- ∼2.7 Ma loess on the northeastern CLP (at Jiaxian), which today receives little precipitation. Conversely, hornblende content in the upper Miocene-Pliocene Red Clay at Jiaxian is <10%, as in the central CLP. The early Quaternary abundance of hornblende at Jiaxian indicates that the current northwestward-decreasing precipitation pattern and consequent dry climate at Jiaxian must have been initiated since ∼2.7 Ma, preventing hornblende dissolution to amounts <10% as observed in the central CLP. By contrast, the 7 Ma and 3 Ma Jiaxian Red Clay hornblende content is significantly less than that of the Xifeng samples, despite the fact that today Xifeng receives more precipitation than Jiaxian, with expected enhanced hornblende weathering. This suggests that the northeastern CLP received more precipitation during the Late Miocene-Pliocene than at Xifeng, indicating that the precipitation gradient on the CLP was more east-west during the Late Miocene-Pliocene rather than northwest-southeast as it was in the Quaternary. A comparison of magnetic susceptibility records for these sections confirms this inference. We attribute this major change in climatic patterns at ∼2.7 Ma to decreased northward moisture transportation associated with Northern Hemisphere glaciation and cooling in the Quaternary. This study therefore demonstrates the potential usefulness of employing heavy mineral analysis in both paleoclimatic and paleooceanographic reconstructions.

Publisher URL: www.sciencedirect.com/science

DOI: S1367912017306053

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.