5 years ago

Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light

Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light
Titanium dioxide is the most popular photocatalyst to degrade organic pollutants in air, as well as in water. The principal drawback preventing its commercial application lies in its limited absorption of the visible light (400–700nm), while it is active under UV irradiation (≤387nm). Supporting noble metals in the form of nanoparticles on TiO2 increases its activity in the visible range. However, both the synthesis of noble metal nanoparticles and their deposition on TiO2 are multi-step processes that often require organic solvents. Here, we deposit Ag nanoparticles from AgNO3 on the surface of micrometric TiO2 with H2O as a solvent and under ultrasound irradiation at 30Wcm−2. Ultrasound increases the surface amount of Ag on TiO2 with heterogeneous size distribution of Ag nanoparticles, which are bigger and overlaid (1–20nm vs. 0.5–3nm) compared to the sample obtained in traditional conditions (TEM images). While this change in morphology had no effect on acetone photodegradation under UV light, the 5%, 10%, and 20% Ag-TiO2 degraded 17%, 20% and 24% acetone under visible light, respectively. The 10% by weight Ag-TiO2 sample obtained in absence of ultrasound only degraded 14% acetone in 6h, while the bare TiO2 was not active.

Publisher URL: www.sciencedirect.com/science

DOI: S1350417717303127

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.