3 years ago

Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease

Borjan Gagoski, Janet Soul, Henry H. Cheng, Lilla Zöllei, Yogesh Rathi, Silvina Ferradal, P. Ellen Grant, Camilo Jaimes, Jane W. Newburger
Background Given the central role of the thalamus in motor, sensory, and cognitive development, methods to study emerging thalamocortical connectivity in early infancy are of great interest. Purpose To determine the feasibility of performing probabilistic tractography-based thalamic parcellation (PTbTP) in typically developing (TD) neonates and to compare the results with a pilot sample of neonates with congenital heart disease (CHD). Study type Institutional Review Board (IRB)-approved cross-sectional study. Model We prospectively recruited 20 TD neonates and five CHD neonates (imaged preoperatively). Field Strength/Sequence MRI was performed at 3.0T including diffusion-weighted imaging (DWI) and 3D magnetization prepared rapid gradient-echo (MPRAGE). Assessment A radiologist and trained research assistants segmented the thalamus and seven cortical targets for each hemisphere. Using the thalami as seeds and the cortical labels as targets, FSL library tools were used to generate probabilistic tracts. A Hierarchical Dirichlet Process algorithm was then used for clustering analysis. A radiologist qualitatively assessed the results of clustering. Quantitative analyses were also performed. Statistical Tests We summarized the demographic data and results of clustering with descriptive statistics. Linear regressions covarying for gestational age were used to compare groups. Results In 17 of 20 TD neonates, we identified five connectivity-determined clusters, which correlate with known thalamic nuclei and subnuclei. In four neonates with CHD we observed a spectrum of abnormalities including fewer and disorganized clusters or small supernumerary clusters (up to seven per thalamus). After covarying for differences in corrected gestational age (cGA), the fractional anisotropy (FA), volume, and normalized thalamic volume were significantly lower in CHD neonates (P < 0.01). Data Conclusions Using PTbTP clusters, correlating well with the location and connectivity of known thalamic nuclei, were identified in TD neonates. Differences in thalamic clustering outputs were identified in four neonates with CHD, raising concern for disordered thalamic connectivity. PTbTP is feasible in TD and CHD neonates. Preliminary findings suggest the prenatal origins of altered connectivity in CHD. Level of Evidence: 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25875

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.