3 years ago

Mechanism and selectivity of rhodium-catalyzed CH bond arylation of indoles

Mechanism and selectivity of rhodium-catalyzed CH bond arylation of indoles
Stefano Santoro, Fahmi Himo
Density functional theory calculations are used to study the reaction mechanism and origins of C2-selectivity in a rhodium-catalyzed arylation of indole. It is shown that the reaction is catalyzed by an anionic Rh(III)-intermediate that activates the substrate through a concerted-metalation deprotonation. Dissociation of pivalic acid and subsequent reductive elimination generate the arylated indole product. Oxidative addition of the aryl iodide and a subsequent ligand exchange regenerates the active catalytic species. The origin of the regioselectivity is found to be the more favorable interaction between the 2-indolyl fragment and the metal center compared to the 3-indolyl fragment. Moreover, the better interaction of the pivalate ligands with the substrate in the transition state for the activation of C2H compared to the transition state for the C3H activation further favors the C2-selectivity. CH bond functionalization reactions are of great importance in organic chemistry and increasingly used in synthesis. In particular, vast efforts are devoted to the search for selective reactions, able to distinguish between different CH bonds. In this article, density functional theory calculations are used to elucidate the mechanism and origins of C2-selectivity in a rhodium-catalyzed arylation of indole.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/qua.25526

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.