3 years ago

Conductance oscillations and zero-bias anomaly in a single superconducting junction to a three-dimensional $Bi_2Te_3$ topological insulator.

O.O. Shvetsov, O.E. Tereshchenko, K.A. Kokh, V.A. Kostarev, E.V. Deviatov, V.A. Golyashov, A. Kononov

We experimentally investigate Andreev transport through a single junction between an s-wave indium superconductor and a thick film of a three-dimensional $Bi_2Te_3$ topological insulator. We study $Bi_2Te_3$ samples with different bulk and surface characteristics, where the presence of a topological surface state is confirmed by direct ARPES measurements. All the junctions demonstrate Andreev transport within the superconducting gap. For junctions with transparent $In-Bi_2Te_3$ interfaces we find a number of nearly periodic conductance oscillations, which are accompanied by zero-bias conductance anomaly. Both effects disappear above the superconducting transition or for resistive junctions. We propose a consistent interpretation of both effects as originating from proximity-induced superconducting correlations within the $Bi_2Te_3$ topological surface state.

Publisher URL: http://arxiv.org/abs/1706.00762

DOI: arXiv:1706.00762v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.