3 years ago

Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures.

Sergey Lepeshov, Brian Korgel, He Liu, Mingsong Wang, Taizhi Jiang, Tianyi Zhang, Oleg Kotov, Andrea Alú, Yuebing Zheng, Mauricio Terrones, Alex Krasnok

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) are extremely attractive materials for optoelectronic applications in the visible and near-IR range. Here, we address for the first time to the best of our knowledge the issue of resonance coupling in hybrid exciton-polariton structures based on single Si nanoparticles coupled to monolayer WS2. We predict a transition from weak to strong coupling regime , with a Rabi splitting energy exceeding 200 meV for a Si nanoparticle covered by monolayer WS 2 at the magnetic optical Mie resonance. This large transition is achieved due to the symmetry of magnetic dipole Mie mode and by changing the surrounding dielectric material from air to water. The prediction is based on the experimental estimation of TMDC dipole moment variation obtained from measured photoluminescence (PL) spectra of WS2 monolayers in different solvents. An ability of such a system to tune the resonance coupling is realized experimentally for optically resonant spherical Si nanoparticles placed on a WS2 monolayer. The Rabi splitting energy obtained for this scenario increases from 49.6 meV to 86.6 meV after replacing air by water. Our findings pave the way to develop high-efficiency optoelectronic, nanophotonic and quantum optical devices.

Publisher URL: http://arxiv.org/abs/1710.09949

DOI: arXiv:1710.09949v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.