5 years ago

Fabrication of single and bundled filament-like tissues using biodegradable hyaluronic acid-based hollow hydrogel fibers

Fabrication of single and bundled filament-like tissues using biodegradable hyaluronic acid-based hollow hydrogel fibers
Hydrogel fibers with biodegradable and biocompatible features are useful for the fabrication of filament-like tissues. We developed cell-laden hyaluronic acid (HA)-based hollow hydrogel fibers to create single and bundled filament-like tissues. The cell-laden fibers were fabricated by crosslinking phenolic-substituted hyaluronic acid (HA-Ph) in an aqueous solution containing cells through a horseradish peroxidase (HRP)-catalyzed reaction in the presence of catalase by extruding the solution in ambient flow of an aqueous solution containing H2O2. The encapsulated cells proliferated and grew within the hollow core, and the cells formed filament-like constructs in both single and bundled fibers, which were obtained by collection on a rotating cylindrical tube. Single and bundled filament-like tissues covered with an additional heterogeneous cell layer were obtained by degrading the fiber membrane using hyaluronidase after covering the fiber surface with heterogeneous cells. Cellular viability was preserved during HA-Ph hydrogel fiber fabrication and filament-like tissue formation. These results demonstrate the feasibility of HA-based hollow hydrogel fibers obtained through HRP- and catalase-mediated reactions to engineer filament-like tissues.

Publisher URL: www.sciencedirect.com/science

DOI: S0141813017311224

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.