3 years ago

Lattice mismatch as the descriptor of segregation, stability and reactivity of supported thin catalyst films.

Edvin Fako, Natalia V. Skorodumova, Igor A. Pašti, Núria López, Slavko V. Mentus, Ana S. Dobrota

Increasing demand and high prices of advanced catalysts motivate a constant search for novel active materials with reduced content of noble metals. The development of thin films and core-shell catalysts seem to be a promising strategy along this path. Using Density Functional Theory we have analyzed a number of surface properties of supported bimetallic thin films with composition A3B (where A = Pt, Pd, B = Cu, Ag, Au). We focus on surface segregation, dissolution stability and surface electronic structure. We also address the chemisorption properties of Pd3Au thin films supported by different substrates, by probing the surface reactivity with CO. We find a strong influence of the support in the case of mono- and bilayers, while the surface strain seems to be the predominant factor in determining the surface properties of supported trilayers and thicker films. In particular, we show that the studied properties of the supported trilayers can be predicted from the lattice mismatch between the overlayer and the support. Namely, if the strain dependence of the corresponding quantities for pure strained surfaces is known, the properties of strained supported trilayers can be reliably estimated. The obtained results can be used in the design of novel catalysts and predictions of the surface properties of supported ultrathin catalyst layers.

Publisher URL: http://arxiv.org/abs/1710.09996

DOI: arXiv:1710.09996v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.