3 years ago

Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws.

Vedika Khemani, Ashvin Vishwanath, D. A. Huse

We study the scrambling of local quantum information in chaotic many-body systems in the presence of a locally conserved quantity like charge or energy that moves diffusively. The interplay between conservation laws and scrambling sheds light on the mechanism by which unitary quantum dynamics, which is reversible, gives rise to diffusive hydrodynamics, which is a dissipative process. We obtain our results in a random quantum circuit model that is constrained to have a conservation law. We find that a generic spreading operator consists of two parts: (i) a conserved part which comprises the weight of the spreading operator on the local conserved densities, whose dynamics is described by diffusive charge spreading. This conserved part also acts as a source that steadily emits a flux of (ii) non-conserved operators. This emission leads to dissipation in the operator hydrodynamics, with the dissipative process being the conversion of operator weight from local conserved operators to nonconserved, at a rate set by the local diffusion current. The emitted nonconserved parts then spread ballistically at a butterfly speed, thus becoming highly nonlocal and hence essentially non-observable, thereby acting as the "reservoir" that facilitates the dissipation. In addition, we find that the nonconserved component develops a power law tail behind its leading ballistic front due to the slow dynamics of the conserved components. This implies that the out-of-time-order commutator (OTOC) between two initially separated operators grows sharply upon the arrival of the ballistic front but, in contrast to systems with no conservation laws, it develops a diffusive tail and approaches its asymptotic late-time value only as a power of time instead of exponentially. We also derive these results within an effective hydrodynamic description which contains multiple coupled diffusion equations.

Publisher URL: http://arxiv.org/abs/1710.09835

DOI: arXiv:1710.09835v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.