3 years ago

Mellitate: A multivalent anion with extreme charge density causes rapid aggregation and misfolding of wild type lysozyme at neutral pH

Robert Dec, Wojciech Dzwolak, Grzegorz Ścibisz
Due to its symmetric structure and abundance of carboxyl groups, mellitic acid (MA–benzenehexacarboxylic acid) has an uncommon capacity to form highly ordered molecular networks. Dissolved in water, MA dissociates to yield various mellitate anions with pronounced tendencies to form complexes with cations including protonated amines. Deprotonation of MA at physiological pH produces anions with high charge densities (MA5- and MA6-) whose influence on co-dissolved proteins has not been thoroughly studied. As electrostatic attraction between highly symmetric MA6- anions and positively charged low-symmetry globular proteins could lead to interesting self-assembly patterns we have chosen hen egg white lysozyme (HEWL), a basic stably folded globular protein as a cationic partner for mellitate anions to form such hypothetical nanostructures. Indeed, mixing of neutral HEWL and MA solutions does result in precipitation of electrostatic complexes with the stoichiometry dependent on pH. We have studied the self-assembly of HEWL-MA structures using vibrational spectroscopy (infrared absorption and Raman scattering), circular dichroism (CD), atomic force microscopy (AFM). Possible HEWL-MA6- molecular docking scenarios were analyzed using computational tools. Our results indicate that even at equimolar ratios (in respect to HEWL), MA5- and MA6- anions are capable of inducing misfolding and aggregation of the protein upon mild heating which results in non-native intermolecular beta-sheet appearing in the amide I’ region of the corresponding infrared spectra. The association process leads to aggregates with compacted morphologies entrapping mellitate anions. The capacity of extremely diluted mellitate anions (i.e. at sub-millimolar concentration range) to trigger aggregation of proteins is discussed in the context of mechanisms of misfolding.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0187328

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.