3 years ago

Early structural changes of the heart after experimental polytrauma and hemorrhagic shock

Sonja Braumüller, Markus S. Huber-Lang, Philipp Eisele, Florian Gebhard, Miriam Kalbitz, Christian K. Braun, Anke Schultze, Sebastian Weckbach, Rebecca Halbgebauer, David A. C. Messerer
Evidence is emerging that systemic inflammation after trauma drives structural and functional impairment of cardiomyocytes and leads to cardiac dysfunction, thus worsening the outcome of polytrauma patients. This study investigates the structural and molecular changes in heart tissue 4 h after multiple injuries with additional hemorrhagic shock using a clinically relevant rodent model of polytrauma. We determined mediators of systemic inflammation (keratinocyte chemoattractant, macrophage chemotactic protein 1), activated complement component C3a and cardiac troponin I in plasma and assessed histological specimen of the mouse heart via standard histomorphology and immunohistochemistry for cellular and subcellular damage and ongoing apoptosis. Further we investigated spatial and quantitative changes of connexin 43 by immunohistochemistry and western blotting. Our results show significantly increased plasma levels of both keratinocyte chemoattractant and cardiac troponin I 4 h after polytrauma and 2 h after induction of hypovolemia. Although we could not detect any morphological changes, immunohistochemical evaluation showed increased level of tissue high-mobility group box 1, which is both a damage-associated molecule and actively released as a danger response signal. Additionally, there was marked lateralization of the cardiac gap-junction protein connexin 43 following combined polytrauma and hemorrhagic shock. These results demonstrate a molecular manifestation of remote injury of cardiac muscle cells in the early phase after polytrauma and hemorrhagic shock with marked disruption of the cardiac gap junction. This disruption of an important component of the electrical conduction system of the heart may lead to arrhythmia and consequently to cardiac dysfunction.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0187327

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.