5 years ago

Reactivity of novel Ceria–Perovskite composites CeO2- LaMO3 (MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant ‘Bisphenol F’: Characterization, kinetic and mechanism studies

Reactivity of novel Ceria–Perovskite composites CeO2- LaMO3 (MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant ‘Bisphenol F’: Characterization, kinetic and mechanism studies
In the present study, ceria, pristine perovskites LaMO3 (Cu, Fe) and novel ceria-perovskite composites CeO2-LaMO3 were successfully prepared and applied as heterogeneous Fenton like- catalysts for the degradation and mineralization of a new emergent compound- bisphenol F (BPF) in aqueous solution. The catalysts were characterized by X-ray diffraction spectrometer (XRD), BET surface area determination, scanning electron microscopy (SEM), Energy Dispersive X-ray (EDS) and X-ray photoelectron spectroscopy (XPS) techniques. Catalytic bisphenol F behavior shows that the activity of pristine perovskites was improved due to the introduction of cerium. Catalytic activity in terms of TOC removal followed the order of CeO2-LaCuO3 >CeO2-LaFeO3 >LaCuO3 >LaFeO3 >CeO2 with about 83, 79, 68, 64 and 28% respectively. Only the novel composite oxide CeO2-LaCuO3 was found to be effective for Bisphenol F degradation at neutral conditions. EPR analyses and scavenging experiments revealed that BPF was mainly decomposed by the attack of OH, especially the surface-bounded OH. BPF decay followed pseudo-first-order reaction kinetics. The absolute rate constant for BPF oxidation by OH was found to 2.09109 M−1 s−1, as determined by the competition kinetic method. Six stable organics intermediates were observed and five of them were identified p-benzoquinone, hydroquinone, 4-hydroxybenzaldehyde and Bis (4-hyroxyphenyl) methanol. Subsequent attack of these intermediates by OH radicals led to the formation of short chain acids: malonic, succinic, acetic, formic and oxalic acids. On the basis of the analytical results for the intermediate products and the assumption that hydroxyls radicals are the major reactive species, a plausible pathway of BPF mineralization during the heterogeneous Fenton process was proposed. Furthermore, the CeO2-LaCuO3 composite exhibited excellent long-term stability in the heterogeneous Fenton-like process. These results suggested that the novel ceria perovskite material would be a promising candidate for practical wastewater treatment.

Publisher URL: www.sciencedirect.com/science

DOI: S092633731730591X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.