3 years ago

Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4

Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4
Single layer g-C3N4 could be obtained from a protonic acid treatment of g-C3N4 or a new sandwich-like orientation growth of melamine. Through the self-assembly of melamine and polyacrylamide by hydrogen bonds and electrostatic interactions, g-C3N4, with extended planarized atomic single layer, exhibits superiority in both photocatalytic hydrogen evolution and photocatalytic degradation under visible light irradiation. Besides low efficiency, the acid exfoliation will destroy the delocalized π-system by inducing O atoms. The decrease of conjugation degree increases the optical gaps, making it hard for g-C3N4 to capture photons. On the contrary, the facile sandwich-like orientation growth of melamine highly keeps the conjugation degree of g-C3N4 and extends its delocalized π-system. Such single layer g-C3N4 is more active even better than N-doped TiO2 under visible light irradiation.

Publisher URL: www.sciencedirect.com/science

DOI: S092633731730560X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.