3 years ago

Nanolevel Control of Gas Sensing Characteristics via p–n Heterojunction between Rh2O3 Clusters and WO3 Crystallites

Nanolevel Control of Gas Sensing Characteristics via p–n Heterojunction between Rh2O3 Clusters and WO3 Crystallites
Nicolae Barsan, Anna Staerz, Udo Weimar, Jong-Heun Lee, Tae-Hyung Kim
Today semiconducting metal oxide (SMOX) based gas sensors are used in a wide array of applications. Dopants, e.g., rhodium, are often used to change the sensor response of SMOXs. The adjustment of sensing characteristics with dopants is usually done empirically, and there is a knowledge gap surrounding how the presence of dopants alters the chemistry of sensing. Here using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dc resistance measurements, and operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, it was understood how surface loading with Rh2O3 changes sensing with WO3. As a result of uniform surface loading, reactions between the Rh2O3 clusters and the analyte gas dominate the reception. Changes in the p–n heterojunction between Rh2O3 and WO3 are responsible for the transduction. These results in combination with existing literature indicate that, through controlled surface doping, it is possible to intentionally tune the sensor characteristics of SMOXs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09316

DOI: 10.1021/acs.jpcc.7b09316

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.