3 years ago

Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection

Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection
Coupling TiO2 with WO3 to develop photocatalytic heterojunctions is one of the most widely used strategies to realize their superior photoactivity. However, the interfacial charge transfer in these heterojunctions is not efficient to achieve an optimized activity. For the first time, the present study reports a facile hydrolysis-hydrothermal approach, whereby ultradispersed TiO2 nanocrystals and WO3 nanorods are concurrently anchored onto reduced graphene oxide (rGO) and formed a novel Z-scheme heterojunction photocatalyst TiO2/rGO/WO3 (TRW). Transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence spectra (PL) are employed to characterize TRW. Control experiments indicate that, in the synthesis process, glucose and the by-product sodium chloride from the hydrolysis reactions are critical for forming highly dispersed and uniform-sized TiO2 nanocrystals and WO3 nanorods. Compared with TiO2/WO3 nanocomposites, TRW shows enhanced activity for bacterial inactivation under simulated solar light. As confirmed by electrochemical characterizations and the reactive oxygen species, rGO in TRW suppresses the recombination of electron-hole pairs and boosts the O2 reduction reactions during photocatalytic process. Z-scheme electron transfer in TRW is proposed based on surface redox reactions and XPS analysis after light irradiation. This study could provide a new clue for designing graphene-based heterojunction photocatalysts for environmental applications.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317305982

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.