3 years ago

Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions

Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions
Steve Scheiner
The various heterodimers formed by a series of Lewis acids with NH3 as Lewis base are identified. Lewis acids include those that can form chalcogen (HSF and HSBr), pnicogen (H2PF and H2PBr), and tetrel (H3SiF and H3SiBr) bonds, as well as H-bonds and halogen bonds. The molecular electrostatic potential (MEP) of each Lewis acid is considered in a number of ways. Pictorial versions show broad regions of positive and negative MEP, on surfaces that vary with respect to either the value of the chosen isopotential, or their distance from the nuclei. Specific points are identified where the MEP reaches a maximum on a particular isodensity surface (Vs,max). The locations and values of Vs,max were evaluated on different isodensity surfaces, and compared to the stabilities of the various equilibrium geometries. As the chosen isodensity is decreased, and the MEP maxima drift away from the molecule, some points maintain their angular positions with respect to the molecule, whereas others undergo a reorientation. The lowering isodensity also causes some of the maxima to disappear. In general, there is a fairly good correlation between the energetic ordering of the equilibrium structures and the values of Vs,max. A number of possible Lewis acid sites on the heteroaromatic imidazole ring were also considered and presents some cautions about application of Vs,max as the principal criterion for predicting equilibrium geometries. © 2017 Wiley Periodicals, Inc. Various facets of the molecular electrostatic potential (MEP) are examined and compared with one another, as predictors of the binding energy calculated with a partner molecule. The maximum of the MEP can be computed on each of several different isodensity surfaces, just as pictorial versions of the MEP can be evaluated at a number of distances from each nucleus. These comparisons were made for systems containing H, halogen, chalcogen, pnicogen, and tetrel bonds.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.25085

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.