3 years ago

Synthesis of Spherical Silver-coated Li 4 Ti 5 O 12 Anode Material by a Sol-Gel-assisted Hydrothermal Method

Shaofang Li, Jun Li, Lu Lu, Shuaijun Xu, Lifang Lan, Si Huang

Abstract

Ag-coated spherical Li4Ti5O12 composite was successfully synthesized via a sol-gel-assisted hydrothermal method using an ethylene glycol and silver nitrate mixture as the precursor, and the influence of the Ag coating contents on the electrochemical properties of its was extensively investigated. X-ray diffraction (XRD) analysis indicated that the Ag coating does not change the spinel structure of Li4Ti5O12. The electrochemical impedance spectroscopy (EIS) analyses demonstrated that the excellent electrical conductivity of the Li4Ti5O12/Ag resulted from the presence of the highly conducting silver coating layer. Additionally, the nano-thick silver layer, which was uniformly coated on the particles, significantly improved this material’s rate capability. As a consequence, the silver-coated micron-sized spherial Li4Ti5O12 exhibited excellent electrochemical performance. Thus, with an appropriate silver content of 5 wt.%, the Li4Ti5O12/Ag delivered the highest capacity of 186.34 mAh g−1 at 0.5C, which is higher than that of other samples, and maintained 92.69% of its initial capacity at 5C after 100 cycles. Even at 10C after 100 cycles, it still had a capacity retention of 89.17%, demonstrating remarkable cycling stability.

Trial registration

ISRCTN NARL-D-17-00568

Publisher URL: https://link.springer.com/article/10.1186/s11671-017-2342-z

DOI: 10.1186/s11671-017-2342-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.