3 years ago

Rapid microwave synthesis of I-doped Bi4O5Br2 with significantly enhanced visible-light photocatalysis for degradation of multiple parabens

Rapid microwave synthesis of I-doped Bi4O5Br2 with significantly enhanced visible-light photocatalysis for degradation of multiple parabens
Parabens, a class of preservatives widely used in cosmetic and pharmaceutical products, are currently considered as potential emerging contaminants in the environment. Photocatalytic degradations of different parabens (methyl-, ethyl-, propyl-, and butylparaben) and their mixture were performed for the first time under visible-light irradiation using I-doped Bi4O5Br2 photocatalysts, synthesized by a facile, fast, and energy-saving microwave route. Compared with pure Bi4O5Br2, I-doped samples exhibited enhanced photocatalytic activities in the degradation of the parabens. I0.7-Bi4O5Br2 achieved the best performance, showing approximately 9.5, 10.4, 15.7, 24.2, and 27 times higher activities than those of Bi4O5Br2 in the degradation of methylparaben, ethylparaben, propylparaben, butylparaben, and a mixture of parabens, respectively. The structures of the as-synthesized photocatalysts were carefully characterized, and the primary reactive oxygen species (ROS) in the photocatalytic process were identified. Photogenerated holes and superoxide radicals were found to be the key reactive species. Through doping with iodine, the valence-band potentials of the Bi4O5Br2 photocatalysts were reduced, leading to decreases in their band-gap energies, while the separation efficiencies of the photogenerated carriers were significantly enhanced. Thus, I-doped Bi4O5Br2 could absorb more visible-light and yield more superoxide radicals, resulting in excellent visible-light photodegradations of the parabens. In addition, the as-prepared I0.7-Bi4O5Br2 catalyst maintained a strong stability of photocatalytic performance, indicating its potential for practical applications.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317306240

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.