5 years ago

Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets

Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets
Photocatalytic oxidation has recently been recognized as an attractive technology for NO removal, in which the main products are NO2 or HNO3. However, these products may cause secondary pollution and deactivation of the involved photocatalysts. In this study, we demonstrate that carbon vacancy-modified nanosheet structure g-C3N4 (Ns-g-C3N4) can efficiently and selectively reduce NO to N2 under visible light. Since N2 is a green gas and can easily desorb from the active sites, the problems such as secondary pollution and catalyst deactivation are largely avoided. It was found that two structural characters of Ns-g-C3N4, ultrathin nanostructure and abundant surface defect sites, could promote its visible light absorption, and favor the separation and transfer of photogenerated charge carriers as well as strong chemisorption of NO, leading to high photoreactivity. Meanwhile, the surface defects of Ns-g-C3N4 shift the adsorption structure of NO from CNO for the bulk counterpart to CvON (adsorbed at the carbon vacancy site, Cv), eventually resulting in its high selectivity of converting NO to N2. The present study underlines the impetus of utilizing surface defect structure to regulate photocatalytic reaction pathway.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317306501

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.