3 years ago

11C-PE2I and 18F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study

Tom Foltynie, Natalie Valle-Guzman, Gesine Paul, Håkan Widner, Paola Piccini, Roger A. Barker, Antonio Martín-Bastida, Nick P. Lao-Kaim, Weihua Li, Marios Politis, Clare Loane, Andreas A. Roussakis
Background 18F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18F-dopa with the highly selective dopamine transporter radioligand 11C-PE2I for the assessment of motor severity and rate of progression in PD. Methods Thirty-three mild-moderate PD patients underwent 18F-dopa and 11C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. Results Standard multiple regression at baseline indicated that 11C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11C-PE2I BPND and motor severity across the whole striatum bilaterally. 18F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11C-PE2I BPND, ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18F-dopa Ki. One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11C-PE2I BPND and Δbradykinesia-rigidity. Conclusions Striatal 11C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mds.27183

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.