3 years ago

Tuneable diode laser spectroscopy correction factor investigation on ammonia measurement

Current diesel engine aftertreatment systems, such as Selective Catalyst Reduction (SCR) use ammonia (NH3) to reduce Nitrogen Oxides (NOx) into Nitrogen (N2) and water (H2O). However, if the reaction between NH3 and NOx is unbalanced, it can lead either NH3 or NOx being released into the environment. As NH3 is classified as a dangerous compound in the environment, its accurate measurement is essential. Tuneable Diode Laser (TDL) spectroscopy is one of the methods used to measure raw emissions inside engine exhaust pipes, especially NH3. This instrument requires a real-time exhaust temperature, pressure and other interference compounds in order to adjust itself to reduce the error in NH3 readings. Most researchers believed that exhaust temperature and pressure were the most influential factors in TDL when measuring NH3 inside exhaust pipes. The aim of this paper was to quantify these interference effects on TDL when undertaking NH3 measurement. Surprisingly, the results show that pressure was the least influential factor when compared to temperature, H2O, CO2 and O2 when undertaking NH3 measurement using TDL.

Publisher URL: www.sciencedirect.com/science

DOI: S1352231017307318

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.