3 years ago

Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites

Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites
Hiroshi Tomiyasu, Koji Yamada, Shinji Aramaki, Toshiyuki Urano, Said Kazaoui, Ivan Turkevych, Michio Kondo, Hideo Yamagishi, Eisuke Ito
Hybrid CPbX3 (C: Cs, CH3NH3; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C2ABX6 double perovskites based on alternating corner-shared AX6 and BX6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX6 and BX6 octahedra with the general formula AaBbXx (x=a+3 b) such as Ag3BiI6, Ag2BiI5, AgBiI4, AgBi2I7. As perovskites were named after their prototype oxide CaTiO3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO2. We studied structural and optoelectronic properties of several highly stable and promising Ag–Bi–I photovoltaic rudorffites that feature direct band gaps in the range of 1.79–1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO2/Ag3BiI6/PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. Move over perovskite: Optoelectronic properties of several highly stable silver iodobismuthates with rudorffite structure reveal them as alternative nontoxic and solution-processable photovoltaic materials that feature direct band gaps of around 1.8 eV. The proof-of-concept solar cell with FTO/c-m-TiO2/Ag3BiI6/PTAA/Au (c: compact; m: mesoporous; PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]) architecture shows a promising power conversion efficiency of 4.3 %.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/cssc.201700980

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.