5 years ago

Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight

Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight
Jeung Gon Kim, Sung Sik Kim, Jihoon Shin, Nuri Ohn
Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×105 g mol−1. The miller's tale: Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from the collisions between the balls and the vessel efficiently promoted an organic-base-mediated metal- and solvent-free solid-state polymerization. Addition of a small amount of liquid enabled energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×105 g mol−1.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/cssc.201700873

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.