3 years ago

Discovery of a 100 kpc-wide ionised gas structure in an over-dense region of the galaxy group COSMOS-Gr30 at z ~ 0.7.

Léo Michel-Dansac, Adrien Guérou, Davor Krajnović, Wolfram Kollatschny, David Carton, Peter M. Weilbacher, Marcella Carollo, Thierry Contini, Benoît Epinat, Geneviève Soucail, Johan Richard, Roland Bacon, Leindert Boogaard, Hayley Finley, Raffaella Anna Marino, Lutz Wisotzki, Stephen Hamer, Jarle Brinchmann, Sebastiano Cantalupo

We report the discovery of a 10^4 kpc^2 gaseous structure detected in [OII] in an over-dense region of the COSMOS-Gr30 galaxy group at z~0.725 thanks to deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of (~5+-3)x10^10 Msun and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen of group members embedded in this structure from emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions thanks to line diagnostics (R23, O32 and [OIII]/H\beta) available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided in two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns linking some galaxies. The second sub-structure links another massive galaxy hosting an Active Galactic Nucleus to a low mass galaxy but also extends orthogonally to the AGN host disk over ~35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their large velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Whatever the hypothesis, the extended gas seems to be non primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures.

Publisher URL: http://arxiv.org/abs/1710.11225

DOI: arXiv:1710.11225v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.