3 years ago

KiDS-450: Cosmological Constraints from Weak Lensing Peak Statistics-I: Inference from Analytical Prediction of High Signal-to-Noise Ratio Convergence Peaks.

Chuzhong Pan, Konrad Kuijken, Peter Schneider, Catherine Heymans, Fedor Getman, Xiangkun Liu, Thomas Erben, Nicolas Martinet, Emanuella Puddu, Dominik Klaes, Angus Wright, Julian Merten, Qiao Wang, Aniello Grado, Jörg P. Dietrich, Joachim Harnois-Déraps, Henk Hoekstra, Zuhui Fan, HuanYuan Shan, Mario Radovich, Hendrik Hildebrandt, Marika Asgari

This paper is the first of a series of papers constraining cosmological parameters with weak lensing peak statistics using $\sim 450~\rm deg^2$ of imaging data from the Kilo Degree Survey (KiDS-450). We measure high signal-to-noise ratio (SNR: $\nu$) weak lensing convergence peaks in the range of $3<\nu<5$, and employ theoretical models to derive expected values. These models are validated using a suite of simulations. We take into account two major systematic effects, the boost factor and the effect of baryons on the mass-concentration relation of dark matter haloes. In addition, we investigate the impacts of other potential astrophysical systematics including the projection effects of large scale structures, intrinsic galaxy alignments, as well as residual measurement uncertainties in the shear and redshift calibration. Assuming a flat $\Lambda$CDM model, we find constraints for $S_{\rm 8}=\sigma_{\rm 8}(\Omega_{\rm m}/0.3)^{0.5}=0.746^{+0.046}_{-0.107}$ according to the degeneracy direction of the cosmic shear analysis and $\Sigma_{\rm 8}=\sigma_{\rm 8}(\Omega_{\rm m}/0.3)^{0.38}=0.696^{+0.048}_{-0.050}$ based on the derived degeneracy direction of our high-SNR peak statistics. The difference between the power index of $S_{\rm 8}$ and in $\Sigma_{\rm 8}$ indicates that combining the two probes has the potential to break the degeneracy in $\sigma_{\rm 8}$ and $\Omega_{\rm m}$. Our results are consistent with the cosmic shear tomographic correlation analysis of the same dataset and $\sim 2\sigma$ lower than the Planck 2016 results.

Publisher URL: http://arxiv.org/abs/1709.07651

DOI: arXiv:1709.07651v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.