3 years ago

Tunable quantum spin liquidity in the 1/6th-filled breathing kagome lattice.

H. D. Zhou, D. Ziat, A. Verrier, R. Sinclair, X. F. Sun, A. Akbari-Sharbaf, J. A. Quilliam

We present measurements on a series of materials, Li$_2$In$_{1-x}$Sc$_x$Mo$_3$O$_8$, that can be described as a 1/6th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter non-monotonically. $\mu$SR experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016)]. The specific heat for samples at intermediate Sc concentration and with minimal breathing parameter, show consistency with the predicted $U(1)$ quantum spin liquid.

Publisher URL: http://arxiv.org/abs/1709.01904

DOI: arXiv:1709.01904v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.