3 years ago

Analysis of the measurements of anisotropic a.c. vortex resistivity in tilted magnetic fields.

Enrico Silva, Nicola Pompeo

Measurements of the high-frequency complex resistivity in superconductors are a tool often used to obtain the vortex parameters, such as the vortex viscosity, the pinning constant and the depinning frequency. In anisotropic superconductors, the extraction of these quantities from the measurements faces new difficulties due to the tensor nature of the electromagnetic problem. The problem is specifically intricate when the magnetic field is tilted with respect to the crystallographic axes. Partial solutions exist in the free-flux-flow (no pinning) and Campbell (pinning dominated) regimes. In this paper we develop a full tensor model for the vortex motion complex resistivity, including flux-flow, pinning, and creep. We give explicit expressions for the tensors involved. We obtain that, despite the complexity of the physics, some parameters remain scalar in nature. We show that under specific circumstances the directly measured quantities do not reflect the true vortex parameters, and we give procedures to derive the true vortex parameters from measurements taken with arbitrary field orientations. Finally, we discuss the applicability of the angular scaling properties to the measured and transformed vortex parameters and we exploit these properties as a tool to unveil the existence of directional pinning.

Publisher URL: http://arxiv.org/abs/1710.11485

DOI: arXiv:1710.11485v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.