3 years ago

Light sterile neutrinos, dark matter, and new resonances in a $U(1)$ extension of the MSSM.

G. Lazarides, Q.Shafi, A. Hebbar

We present $\psi'$MSSM, a model based on a $U(1)_{\psi'}$ extension of the minimal supersymmetric standard model. The gauge symmetry $U(1)_{\psi'}$, also known as $U(1)_N$, is a linear combination of the $U(1)_\chi$ and $U(1)_\psi$ subgroups of $E_6$. The model predicts the existence of three sterile neutrinos with masses $\lesssim 0.1~{\rm eV}$, if the $U(1)_{\psi'}$ breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is $\Delta N_{\nu}\simeq 0.29$. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the $U(1)_{\psi'}$ breaking scale is increased to $10^3~{\rm TeV}$, the sterile neutrinos, which are stable on account of a $Z_2$ symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from $U(1)_{\psi'}$. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known $\mu$ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of $U(1)_{\psi'}$ produces superconducting strings that may be present in our galaxy. A $U(1)$ R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.

Publisher URL: http://arxiv.org/abs/1706.09630

DOI: arXiv:1706.09630v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.