3 years ago

Quantum Airy Photons.

Amin Shahverdi, Jia-Yang Chen, Stephanie Maruca, Santosh Kumar, Yong Meng Sua, Yu-Ping Huang

With exotic propagation properties, optical Airy beams have been well studied for innovative applications in communications, biomedical imaging, micromachining, and so on. Here we extend those studies to the quantum domain, creating quantum correlated photons in finite-energy Airy transverse modes via spontaneous parametric down conversion and sub-sequential spatial light modulation. Through two-photon coincidence measurements, we verify their Airy spatial wavefunctions, propagation along a parabolic trajectory, and that the spatial modulation does not introduce any observable degradation of quantum correlation between the photons. These results suggest the feasibility of using spatially structured photons for practically advantageous quantum applications.

Publisher URL: http://arxiv.org/abs/1710.11208

DOI: arXiv:1710.11208v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.