3 years ago

The Slashdot Zoo: Mining a Social Network with Negative Edges.

Christian Bauckhage, Andreas Lommatzsch, Jérôme Kunegis

We analyse the corpus of user relationships of the Slashdot technology news site. The data was collected from the Slashdot Zoo feature where users of the website can tag other users as friends and foes, providing positive and negative endorsements. We adapt social network analysis techniques to the problem of negative edge weights. In particular, we consider signed variants of global network characteristics such as the clustering coefficient, node-level characteristics such as centrality and popularity measures, and link-level characteristics such as distances and similarity measures. We evaluate these measures on the task of identifying unpopular users, as well as on the task of predicting the sign of links and show that the network exhibits multiplicative transitivity which allows algebraic methods based on matrix multiplication to be used. We compare our methods to traditional methods which are only suitable for positively weighted edges.

Publisher URL: http://arxiv.org/abs/1710.11395

DOI: arXiv:1710.11395v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.