3 years ago

The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow vs variable IMF.

Jianhui Lian, Paolo Ventura, Daniel Thomas, Daniel Goddard, Violeta Gonzalez-Perez, Johan Comparat, Claudia Maraston

We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from SDSS DR12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases toward galaxies with lower masses and reaches 0.4-0.8 dex at 10^9 Msun (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low mass galaxies implies dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep IMF slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local universe. Our model also naturally reproduces the flattening of the MZRgas at the high mass end leaving the MZRstar intact, as seen in observational data.

Publisher URL: http://arxiv.org/abs/1710.11135

DOI: arXiv:1710.11135v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.