3 years ago

Kepler Multi-Planet Systems Exhibit Unexpected Intra-system Uniformity in Mass and Radius.

Sarah Millholland, Gregory Laughlin, Songhu Wang

The widespread prevalence of close-in, nearly coplanar super-Earth- and sub-Neptune-sized planets in multiple-planet systems was one of the most surprising results from the Kepler mission. By studying a uniform sample of Kepler "multis" with mass measurements from transit timing variations (TTVs), we show that a given planetary system tends to harbor a characteristic type of planet. That is, planets in a system have both masses and radii that are far more similar than if the system were assembled randomly from planets in the population. This finding has two important ramifications. First, the large intrinsic compositional scatter in the planet mass-radius relation is dominated by system-to-system variance rather than intra-system variance. Second, if provided enough properties of the star and primordial protoplanetary disk, there may be a substantial degree of predictability in the outcome of the planet formation process. We show that stellar mass and metallicity account for of order $20\%$ of the variation in outcomes; the remainder is as-yet unknown.

Publisher URL: http://arxiv.org/abs/1710.11152

DOI: arXiv:1710.11152v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.