3 years ago

Modelling the cosmic spectral energy distribution and extragalactic background light over all time.

Simon P. Driver, Claudia d. P. Lagos, Luke J. Davies, Stephen K. Andrews, Aaron S. G. Robotham

We present a phenomological model of the Cosmic Spectral Energy Distribution (CSED) and the integrated galactic light (IGL) over all cosmic time. This model, based on an earlier model by Driver et al. (2013), attributes the cosmic star formation history to two processes -- firstly, chaotic clump accretion and major mergers, resulting in the early-time formation of bulges and secondly, cold gas accretion, resulting in late-time disc formation. Under the assumption of a Universal Chabrier initial mass function, we combine the Bruzual & Charlot (2003) stellar libraries, the Charlot & Fall (2000) dust attenuation prescription and template spectra for emission by dust and active galactic nuclei to predict the CSED -- pre- and post-dust attenuation -- and the IGL throughout cosmic time. The phenomological model, as constructed, adopts a number of basic axioms and empirical results and has minimal free parameters. We compare the model output, as well as predictions from the semi-analytic model GALFORM to recent estimates of the CSED out to $z=1$. By construction, our empirical model reproduces the full energy output of the Universe from the ultraviolet to the far-infrared extremely well. We use the model to derive predictions of the stellar and dust mass densities, again finding good agreement. We find that GALFORM predicts the CSED for $z < 0.3$ in good agreement with the observations. This agreement becomes increasingly poor towards $z = 1$, when the model CSED is $\sim$50 per cent fainter. The latter is consistent with the model underpredicting the cosmic star formation history. As a consequence, GALFORM predicts a $\sim$30 per cent fainter IGL.

Publisher URL: http://arxiv.org/abs/1710.11329

DOI: arXiv:1710.11329v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.