3 years ago

Stateful characterization of resistive switching TiO2 with electron beam induced currents.

Jabez J. McClelland, Nikolai Zhitenev, Evgheni Strelcov, Gina C. Adam, Andrei Kolmakov, Brian D. Hoskins, Dmitri B. Strukov

Metal oxide resistive switches are increasingly important as possible artificial synapses in next generation neuromorphic networks. Nevertheless, there is still no codified set of tools for studying properties of the devices. To this end, we demonstrate electron beam induced current measurements as a powerful method to monitor the development of local resistive switching in TiO2 based devices. By comparing beam-energy dependent electron beam induced currents with Monte Carlo simulations of the energy absorption in different device layers, it is possible to deconstruct the origins of filament image formation and relate this to both morphological changes and the state of the switch. By clarifying the contrast mechanisms in electron beam induced current microscopy it is possible to gain new insights into the scaling of the resistive switching phenomenon and observe the formation of a current leakage region around the switching filament. Additionally, analysis of symmetric device structures reveals propagating polarization domains.

Publisher URL: http://arxiv.org/abs/1704.01475

DOI: arXiv:1704.01475v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.