5 years ago

Selective transformation of renewable furfural catalyzed by diverse active species derived from 2D co-based metal-organic frameworks

Selective transformation of renewable furfural catalyzed by diverse active species derived from 2D co-based metal-organic frameworks
We report a facile method for gaining two different types of highly active species from the same 2D Co-based MOFs, which can effectively catalyze the selective transformation of biomass-derived furfural (FUR) in alcohols. Removal of the coordinated water molecules from the Co-based MOFs at 300°C creates the open metal centers as catalytic active species (designated as ACS-I catalyst). Increasing the pyrolysis temperature to 700°C, the derived multi-element carbon-matrix nanocomposite from the MOFs (designated as ACS-II catalyst) also shows highly catalytic performance. Both catalyst ACS-I and ACS-II exhibit high reactivity (84.9% conv.) and excellent selectivity (ca. 99.0%) in the oxidative condensation of FUR with n-propanol to produce 3-(furan-2-yl-)-2-methylacrylaldehyde (2) in the presence of molecular oxygen. The particular evidence for the role of metal Co centers in ACS-I and ACS-II is originated from the catalyst characterization and control experiments, in which Ni-I and Ni-II catalysts derived from isomorphrous 2D Ni-based MOFs show no catalytic activity on the transformation of FUR under the similar conditions.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717302245

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.