3 years ago

Umklapp scattering as the origin of $T$-linear resistivity in the normal state of high-$T_c$ cuprate superconductors.

Neil J. Robinson, Alexei M. Tsvelik, T. Maurice Rice

The high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature $T$, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low-temperature, within the pseudogap phase, the resistivity is instead quadratic in $T$, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: umklapp scattering is at the heart of the behavior in the normal phase.

Publisher URL: http://arxiv.org/abs/1707.05666

DOI: arXiv:1707.05666v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.