DNA-RNA interactions are critical for chromosome condensation in Escherichia coli [Genetics]
![DNA-RNA interactions are critical for chromosome condensation in Escherichia coli [Genetics]](/image/eyJ1cmkiOiJodHRwOi8vc3RhY2thZGVtaWMuaGVyb2t1YXBwLmNvbS9pbWFnZT9pbWFnZV9pZD00Mzc2MyIsImZvcm1hdCI6IndlYnAiLCJxdWFsaXR5IjoxMDAsIndpZHRoIjo1MTIsIm5vQ2FjaGUiOnRydWV9.webp)
Bacterial chromosome (nucleoid) conformation dictates faithful regulation of gene transcription. The conformation is condition-dependent and is guided by several nucleoid-associated proteins (NAPs) and at least one nucleoid-associated noncoding RNA, naRNA4. Here we investigated the molecular mechanism of how naRNA4 and the major NAP, HU, acting together organize the chromosome structure by establishing multiple DNA–DNA contacts (DNA condensation). We demonstrate that naRNA4 uniquely acts by forming complexes that may not involve long stretches of DNA–RNA hybrid. Also, uncommonly, HU, a chromosome-associated protein that is essential in the DNA–RNA interactions, is not present in the final complex. Thus, HU plays a catalytic (chaperone) role in the naRNA4-mediated DNA condensation process.
Publisher URL: http://feedproxy.google.com/~r/Pnas-RssFeedOfEarlyEditionArticles/~3/9Xg3ykj-p94/1711285114.short
DOI: 10.1073/pnas.1711285114
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.