3 years ago

COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation [Plant Biology]

COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation [Plant Biology]
Na Lian, Hong Li, Yangyang Zhou, Xiaohong Wang, Tonglin Mao, Xiaomin Liu, Jigang Li

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a well-known E3 ubiquitin ligase, functions as a central regulator of plant growth and photomorphogenic development in plants, including hypocotyl elongation. It has been well-established that, in darkness, COP1 targets many photomorphogenesis-promoting factors for ubiquitination and degradation in the nucleus. However, increasing evidence has shown that a proportion of COP1 is also localized outside the nucleus in dark-grown seedlings, but the physiological function of this localization remains largely unclear. In this study, we demonstrate that COP1 directly targets and mediates the degradation of WAVE-DAMPENED 2-LIKE 3 (WDL3) protein, a member of the microtubule-associated protein (MAP) WVD2/WDL family involved in regulating hypocotyl cell elongation of Arabidopsis seedlings. We show that COP1 interacts with WDL3 in vivo in a dark-dependent manner at cortical microtubules. Moreover, our data indicate that COP1 directly ubiquitinates WDL3 in vitro and that WDL3 protein is degraded in WT seedlings but is abundant in the cop1 mutant in the dark. Consistently, introduction of the wdl3 mutation weakened, whereas overexpression of WDL3 enhanced, the short-hypocotyl phenotype of cop1 mutant in darkness. Together, this study reveals a function of COP1 in regulating the protein turnover of a cytosol-localized MAP in etiolated hypocotyls, thus providing insights into COP1-mediated degradation of downstream factors to control seedling photomorphogenesis.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.