3 years ago

Examining Binding to Nanoparticle Surfaces Using Saturation Transfer Difference (STD)-NMR Spectroscopy

Examining Binding to Nanoparticle Surfaces Using Saturation Transfer Difference (STD)-NMR Spectroscopy
Austin M. Parsons, Hui Xu, Yunzhi Zhang, Leah B. Casabianca
The interaction of molecules with the surface of nanoparticles is important in many fields of study, including drug delivery and nanoparticle toxicity. Solution-state NMR has the potential to provide structural as well as dynamic information regarding molecules adsorbed to the nanoparticle surface. Here, we use Saturation-Transfer Difference NMR (STD-NMR) to examine small molecules binding to the surface of polystyrene nanoparticles. Binding constants for this nonspecific adsorption are determined from the initial slope of the STD buildup curve at several ligand concentrations. We also use the STD-NMR technique to quantify the association of solvent water molecules with the nanoparticle surface. The results presented here will be useful to future studies involving peptides and proteins adsorbed on nanoparticle surfaces.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08828

DOI: 10.1021/acs.jpcc.7b08828

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.