3 years ago

Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction

Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction
Stefano Aghion, André Eilert, Ai Leen Koh, Chang Liu, Thomas W. Hansen, Anders Nilsson, Lars G. M. Pettersson, Rafael Ferragut, Oscar Diaz-Morales, Filippo Cavalca
Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity toward ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although its stability under the reductive CO2RR conditions remains unclear. This work sheds light on the nature and stability of subsurface oxygen. Our spectroscopic results show that oxygen is primarily concentrated in an amorphous 1–2 nm thick layer within the Cu subsurface, confirming that subsurface oxygen is stable during CO2RR for up to 1 h at −1.15 V vs RHE. Besides, it is associated with a high density of defects in the OD-Cu structure. We propose that both low coordination of the amorphous OD-Cu surface and the presence of subsurface oxygen that withdraws charge from the copper sp- and d-bands might selectively enhance the binding energy of CO.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08278

DOI: 10.1021/acs.jpcc.7b08278

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.