3 years ago

Ultrasensitive Ratiometric Homogeneous Electrochemical MicroRNA Biosensing via Target-Triggered Ru(III) Release and Redox Recycling

Ultrasensitive Ratiometric Homogeneous Electrochemical MicroRNA Biosensing via Target-Triggered Ru(III) Release and Redox Recycling
Feng Li, Xinzhi Sun, Panpan Gai, Chengcheng Gu, Haiyin Li
A new label-free and enzyme-free ratiometric homogeneous electrochemical microRNA biosensing platform was constructed via target-triggered Ru(III) release and redox recycling. To design the effective ratiometric dual-signal strategy, [Ru(NH3)6]3+ (Ru(III)), as one of the electroactive probes, was ingeniously entrapped in the pores of the positively charged mesoporous silica nanoparticle (PMSN), and another electroactive probe, [Fe(CN)6]3– (Fe(III)), was selected to facilitate Ru(III) redox recycling due to its distinctly separated reduction potential and different redox properties. Owing to the liberation of the formed RNA–ssDNA complex from PMSN, the target miRNA triggered the Ru(III) release and was quickly electroreduced to Ru(II), and then, the in-site-generated Ru(II) could be chemically oxidized back to Ru(III) by Fe(III). Thus, with the release of Ru(III) and the consumption of Fe(III), a significant enhancement for the ratio of electroreduction current [Ru(NH3)6]3+ over [Fe(CN)6]3– (IRu(III)/IFe(III)) value was observed, which was dependent on the concentration of the target miRNA. Consequently, a simple, accurate, and ultrasensitive method for the miRNA assay was readily realized. Furthermore, the limit of detection (LOD) of our method was down to 33 aM (S/N = 3), comparable or even superior to other approaches reported in literature. More importantly, it also exhibited excellent analytical performance in the complex biological matrix cell lysates. Therefore, this homogeneous biosensing strategy not only provides an ingenious idea for realizing simple, rapid, reliable, and ultrasensitive bioassays but also has a great potential to be adopted as a powerful tool for precision medicine.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b03268

DOI: 10.1021/acs.analchem.7b03268

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.