3 years ago

Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy

Acyl Fluorides: Fast, Efficient, and Versatile Lysine-Based Protein Conjugation via Plug-and-Play Strategy
Sergii Kolodych, Sarah Cianférani, Chloé Michel, Igor Dovgan, Sylvain Ursuegui, Stéphane Erb, Alain Wagner
We report a plug-and-play strategy for the preparation of functionally enhanced antibodies with a defined average degree of conjugation (DoC). The first stage (plug) allows the controllable and efficient installation of azide groups on lysine residues of a native antibody using 4-azidobenzoyl fluoride. The second step (play) allows for versatile antibody functionalization with a single payload or combination of payloads, such as a toxin, a fluorophore, or an oligonucleotide, via copper-free strain-promoted azide–alkyne cycloaddition (SPAAC). It is notable that in comparison to a classical N-hydroxysuccinimide ester (NHS) strategy, benzoyl fluorides show faster and more efficient acylation of lysine residues in a PBS buffer. This translates into better control of the DoC and enables the efficient and fast functionalization of delicate biomolecules at low temperature.

Publisher URL: http://dx.doi.org/10.1021/acs.bioconjchem.7b00141

DOI: 10.1021/acs.bioconjchem.7b00141

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.