3 years ago

Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3

Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3
Hayami Takeda, Masashi Kotobuki, Yusuke Noda, Li Lu, Koki Nakano, Masanobu Nakayama
Solid electrolytes possessing sufficient ionic conductivity and electrochemical stability are urgently needed for the fabrication of all-solid-state Li-ion batteries (LIBs). In this study, we focus on a solid-state oxide electrolyte LiZr2(PO4)3 (LZP), which has NASICON structure and electrochemically stable Zr4+ ions. Using density functional theory (DFT) to calculate the electrochemical window of LZP, we find that it is unstable against Li metal, in accordance with our experimental results. The Li-ion transport is investigated using first-principles molecular dynamics (FPMD) simulations. The calculated Li-ion conductivity at room temperature (5.0 × 10–6 S/cm) and the activation energy for Li-ion diffusion (0.43 eV) are in fair agreement with experimental results. The mechanism of Li-ion conduction in LZP is revealed by analyzing the Li-ion trajectories in the FPMD simulations. It is found that each Li ion migrates between 6b sites as it is pushed out or repelled by other Li ions around these 6b sites. Hence, the high Li-ion conductivity is attributed to a migration mechanism driven by Frenkel-like defect.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01703

DOI: 10.1021/acs.chemmater.7b01703

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.